博客
关于我
elasticsearch 深入 —— normalizer
阅读量:783 次
发布时间:2019-03-24

本文共 2275 字,大约阅读时间需要 7 分钟。

字段的normalizer属性在Elasticsearch中提供了一种强大的文档处理机制,尤其是在字段分析和查询时,能够确保文档在索引和查询阶段的一致性。以下是一些实际案例和查询示例,展示了如何在索引和查询过程中使用normalizer。

###PUT index/{index}{ Poverty and the role of government in it }

在索引设置中,可以定义一个自定义的normalizer来处理特定字段。例如,我们可以创建一个针对foo字段的normalizer,确保在分析和查询时其值是标准化后的版本。

{
"settings": {
"analysis": {
"normalizer": {
"my_normalizer": {
"type": "custom",
"char_filter": [],
"filter": ["lowercase", "asciifolding"]
}
}
}
},
"mappings": {
"_doc": {
"properties": {
"foo": {
"type": "keyword",
"normalizer": "my_normalizer"
}
}
}
}
}

PUT index/_doc/{id}

在索引文档中,字段的值也会经过相同的normalizer处理。例如,以下文档在索引时可以执行以下操作:

{
"foo": "BÀR"
}

在索引过程中,BÀR会被lowercaseasciifolding过滤器处理,最终被标准化为bar

POST index/_refresh

为了确保索引中所有文档的变化得到更新,可以执行以下命令:

在搜索时,同样会使用与索引一致的normalizer处理。例如:

{
"query": {
"term": {
"foo": "BAR"
}
}
}

在这个查询中,BAR将被标准化为bar,因此查询结果将匹配所有存储的barBÀR等版本。

GET index/_search

随后的搜索结果如下:

{
"took": 123,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.2876821,
"hits": [
{
"_index": "index",
"_type": "_doc",
"_id": "2",
"_score": 0.2876821,
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_type": "_doc",
"_id": "1",
"_score": 0.2876821,
"_source": {
"foo": "BÀR"
}
}
]
}
}

GET index/_search

对于聚合的结果,同样会使用normalizer进行处理。例如:

{
"size": 0,
"aggs": {
"foo_terms": {
"terms": {
"field": "foo"
}
}
}
}

在聚合的结果中,foo字段的值已经被标准化为barbaz

###聚合结果

{
"took": 43,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 0.0,
"hits": []
},
"aggregations": {
"foo_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "bar",
"doc_count": 2
},
{
"key": "baz",
"doc_count": 1
}
]
}
}
}

转载地址:http://flnkk.baihongyu.com/

你可能感兴趣的文章
Mysql Innodb 锁机制
查看>>
MySQL InnoDB中意向锁的作用及原理探
查看>>
MySQL InnoDB事务隔离级别与锁机制深入解析
查看>>
Mysql InnoDB存储引擎 —— 数据页
查看>>
Mysql InnoDB存储引擎中的checkpoint技术
查看>>
Mysql InnoDB存储引擎中缓冲池Buffer Pool、Redo Log、Bin Log、Undo Log、Channge Buffer
查看>>
MySQL InnoDB引擎的锁机制详解
查看>>
Mysql INNODB引擎行锁的3种算法 Record Lock Next-Key Lock Grap Lock
查看>>
mysql InnoDB数据存储引擎 的B+树索引原理
查看>>
mysql innodb通过使用mvcc来实现可重复读
查看>>
mysql insert update 同时执行_MySQL进阶三板斧(三)看清“触发器 (Trigger)”的真实面目...
查看>>
mysql interval显示条件值_MySQL INTERVAL关键字可以使用哪些不同的单位值?
查看>>
Mysql join原理
查看>>
MySQL Join算法与调优白皮书(二)
查看>>
Mysql order by与limit混用陷阱
查看>>
Mysql order by与limit混用陷阱
查看>>
mysql order by多个字段排序
查看>>
MySQL Order By实现原理分析和Filesort优化
查看>>
mysql problems
查看>>
mysql replace first,MySQL中处理各种重复的一些方法
查看>>